Playing card game with finite projective geometry

Norbert Bogya

University of Szeged, Bolyai Institute

CADGME, 2016

Natural questions

- How can we construct such cards?
- Does it work with non-8 symbols?
- If yes, does it work with any number of symbols?
- (How many cards are in a deck?)
- How can we realise such cards?

Geometry

Euclid of Alexandria

300 BCE

Elements

Big problem

Projective plane

Projective plane

- Given any two distinct points, there is exactly one line incident with both of them.
- There are four points such that no line is incident with more than two of them.
- Parallel postulate

Instead:
Given any two distinct lines, there is exactly one point incident with both of them.

Fano plane

Fano plane

Fano plane

Points: $\{1,2,3,4,5,6,7\}$

Fano plane

Points: $\{1,2,3,4,5,6,7\}$
Lines: $\{\{1,2,4\},\{1,3,7\},\{1,5,6\},\{2,3,5\},\{3,4,6\},\{4,5,7\},\{2,6,7\}\}$

Fano plane

Points: $\{1,2,3,4,5,6,7\}$
Lines: $\{\{1,2,4\},\{1,3,7\},\{1,5,6\},\{2,3,5\},\{3,4,6\},\{4,5,7\},\{2,6,7\}\}$

Dobble revisited: Natural questions

- How can we construct such cards?
- Does it works with non-8 symbols?
- If yes, does it works with any number of symbols?
- (How many cards is in a deck?)
- How can we realise such cards?

How can we construct such cards?

How can we construct such cards?

Answer is simple: finite projective planes.

How can we construct such cards?

Answer is simple: finite projective planes.

- Point $=$ symbol
- Line = card
- Given any two distinct card, there is exactly one common symbol with both of them.
- Given any two distinct symbols, there is exactly one card with both of them.

Does it works with non-8 symbols?

Does it works with non-8 symbols?

Does it works with any number of symbols?

No.

Does it works with any number of symbols?

No.

Order of the projective plane	\# sysmbols per card	
n	$n+1$	
2	3	1
3	4	1
4	5	1
5	6	1
6	7	do not exist
7	8	1
8	9	1
9	10	4
10	11	do not exist

Does it works with any number of symbols?

What are the orders such that projective planes can be constructed?

Does it works with any number of symbols?

What are the orders such that projective planes can be constructed?

- If n is a prime power then projective planes can always be constructed.
- If not, then we have no idea.

Does it works with any number of symbols?

What are the orders such that projective planes can be constructed?

- If n is a prime power then projective planes can always be constructed.
- If not, then we have no idea.

Conjecture

If n is not prime power then there is no projective plane with order n.

How many cards is in a deck?

How many cards is in a deck?

Answer is simple: 55. (We count them.)

How many cards is in a deck?

Theorem
If a projective plane has a line with $n+1$ points then
(1) every line of the plane contains $n+1$ points;
(2) every point of the plane is incident with $n+1$ lines;
(3) the plane has $n^{2}+n+1$ points and
(4) the plane has $n^{2}+n+1$ lines.

How many cards is in a deck?

Theorem
If a projective plane has a line with $n+1$ points then
(1) every line of the plane contains $n+1$ points;
(2) every point of the plane is incident with $n+1$ lines;
(3) the plane has $n^{2}+n+1$ points and
(4) the plane has $n^{2}+n+1$ lines.

8 symbols per card $=$ every line contains 8 points

How many cards is in a deck?

Theorem
If a projective plane has a line with $n+1$ points then
(1) every line of the plane contains $n+1$ points;
(2) every point of the plane is incident with $n+1$ lines;
(3) the plane has $n^{2}+n+1$ points and
(4) the plane has $n^{2}+n+1$ lines.

8 symbols per card $=$ every line contains 8 points
Then $n=7$.

How many cards is in a deck?

Theorem
If a projective plane has a line with $n+1$ points then
(1) every line of the plane contains $n+1$ points;
(2) every point of the plane is incident with $n+1$ lines;
(3) the plane has $n^{2}+n+1$ points and
(4) the plane has $n^{2}+n+1$ lines.

8 symbols per card $=$ every line contains 8 points
Then $n=7$. So the number of lines (cards) is $7^{2}+7+1=57$.

How many cards is in a deck?

8 symbols per card $=$ every line contains 8 points
Then $n=7$. So the number of lines (cards) is $7^{2}+7+1=57$.

How many cards is in a deck?

8 symbols per card $=$ every line contains 8 points
Then $n=7$. So the number of lines (cards) is $7^{2}+7+1=57$.
"Answer is simple: 55."

How many cards is in a deck?

8 symbols per card $=$ every line contains 8 points
Then $n=7$. So the number of lines (cards) is $7^{2}+7+1=57$.
"Answer is simple: 55."

- Where are two missing cards?

How many cards is in a deck?

8 symbols per card $=$ every line contains 8 points
Then $n=7$. So the number of lines (cards) is $7^{2}+7+1=57$.
"Answer is simple: 55."

- Where are two missing cards?
- Is this the real model or something else?

How can we realise such cards?

Wolfram Mathematica and GAP demonstrations

The End

Thank you for your attention!

